

Améliorer et rendre opérationnels les modèles d'estimation de la masse volumique apparente (MVA) des sols.

Mémoire de fin d'études Par Atoumane LY

Sous la direction : Mr Stéphane FOLLAIN

Maitres de Stage : Mr Alain BOUTHIER

Mme Isabelle COUSIN

CONTEXTE & PROBLEMATIQUE

LA MASSE VOLUMIQUE APPARENTE DU SOL: UN PARAMETRE CLE POUR LE CALCUL DE STOCKS D'ELEMENTS DANS LE SOL

Masse volumique apparente du sol: rapport du poids d'un échantillon de sol sec et de son volume à l'état humide

Masse volumique apparente

Masse de terre fine d'un horizon de sol Stock d'eau (RU), de N minéral , de carbone (MO)

Bilans d'eau, d'azote, de carbone

Difficultés de mesure: lourde de mise en œuvre et destructive (profil)

Estimation de la MVA à l'aide de FPT

LES OBJECTIFS

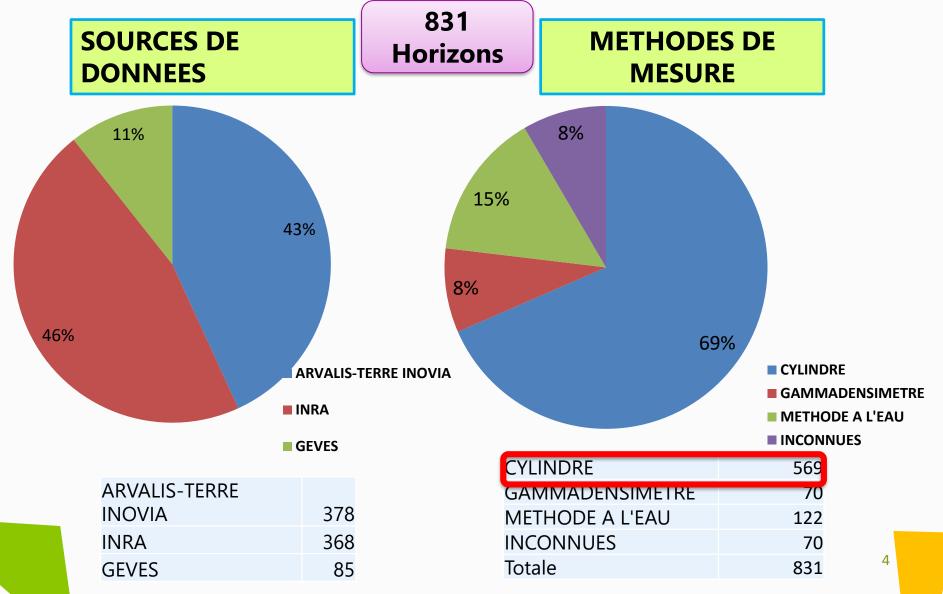
OBJECTIF GENERAL:

Mettre à disposition des utilisateurs, des FPT avec des critères de choix en fonction des données disponibles

♦ Objectif de travail n°1

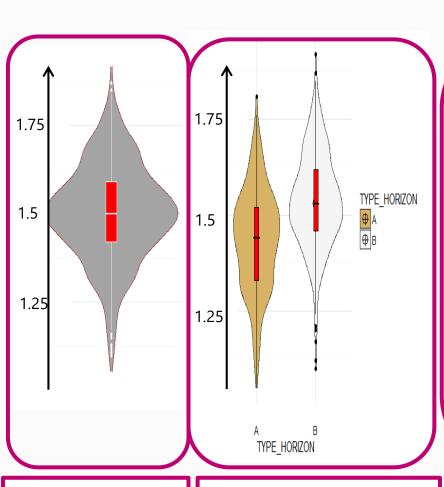
Réactualiser la base de données pour estimer la MVA du sol

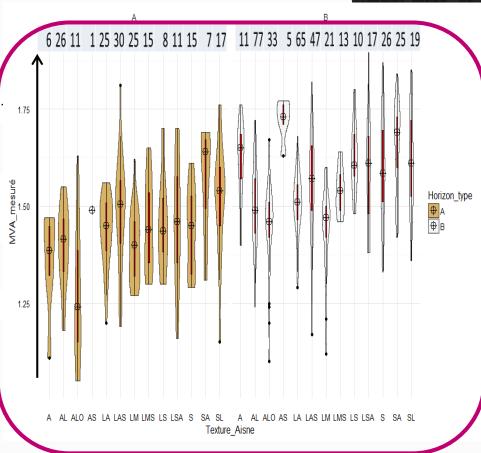
♦ Objectif de travail n°2


Evaluer et comparer la performance statistique des FPT de la MVA recensées

♦ Objectif de travail n°3

Optimiser les paramètres des FPT ayant les meilleures performances


CONSTITUTION D'UNE BASE DE DONNEES



DISTRIBUTION DE LA MVA SUR LA BDD DES MESURES « CYLINDRE »

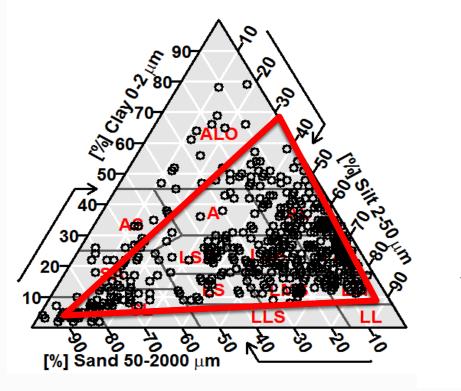
MVA sur l'ensemble des données

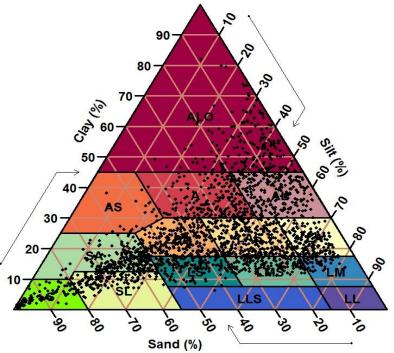
MVA par type d'horizon

MVA par type d'horizon et par classe de texture

23/03/2018

5


ANALYSE DE LA BDD UTILISEE « CYLINDRE »



COMPARAISON ENTRE NOS DONNEES ET CELLES DE LA RMQS

texture des sols sur l'ensemble des données

RMQS composites - Topsoil

CRITERES DE CHOIX DES FONCTIONS DE PEDOTRANSFERT

- Choisir des modèles développés dans le même contexte pédoclimatique
- Choisir des modèles qui ont les mêmes paramètres d'entrées que notre base de données
- ♦ Choix des modèles les plus performants
- ♦ Choix de modèles adaptés aux sols cultivés

Résultats d'évaluation de toutes les FPT

Modèles	Référence	n	biais	RMSE	EF
FPT15	Dexter et al, 2008	569	0.04	0.13	0.18
FPT5	X, Le Bris, 2002	569	-0.02	0.13	0.14
FPT11	Martin M. et al., 2009	569	0.02	0.13	0.04
FPT1	Keller etal, 2010	569	-0.08	0.14	-0.07
FPT12	Hallett et al, 1998	569	0.06	0.15	-0.10
FPT2	Alexander et al,1980	569	0.07	0.15	-0.11
FPT3	Han G etal,2012	569	0.10	0.16	-0.29
FPT14	Dexter et al, 2008	569	-0.12	0.17	-0.53
FPT9	Hollis et al., 2012	198	0.002	0.13	0.12
FPT12a	Hallett et al., 1998	198	-0.02	0.14	-0.04
FPT6	Leonaviciute, 2000	198	-0.05	0.15	-0.23
FPT13	Dexter et al., 2008	198	-0.12	0.18	-0.75
FPT8	Leonaviciute, 2000	371	-0.04	0.12	0.13
FPT12b	Hallett et al., 1998	371	0.1	0.15	-0.39
FPT10	Hollis et al., 2012	371	0.15	0.18	-1.12
FPT7	Leonaviciute, 2000	371	0.3	0.32	-5.06

AJUSTEMENT DES FPTS LES PLUS PERFORMANTES

Ensemble des horizons

- FPT de type Dexter et al.(2008)
- FPT de type Keller et al. (2010) (FPT1)

Horizons de surface

• FPT de type FPT9 développée par Hollis et al. 1998

Horizons de profondeur

 FPT de type FPT8 développée par Leonaviciute et al. 2000

Des exemples de fonctions de pédotransfert

- ❖ Alexander et al. (1980)
 - $MVA = 1,66-0,308(OC)^0,5$
- ❖ Dexter et al. (2008)
 - 1/MVA = 0.580 + 0.059*(COC) [pour horizons travaillés]
 - 1/MVA = 0.638 + 0.072*(COC) [pour horizons non travaillés]
- ❖ Keller et al. (2010)
 - MVA = 1,308+0,0119*Clay+0,0103*Sand-0,00018*Clay²-0,00008*Sand²-0,00062*Silt*OM-0,00059*Sand*OM

Principe de l'ajustement

* Exemple de la fonction de Keller et al. (2010)

 $\mathsf{MVA} = \alpha + \beta^*\mathsf{Clay} + \gamma^*\mathsf{Sand} - \delta^*\mathsf{Clay}^2 - \epsilon^*\mathsf{Sand}^2 - \nu^*\mathsf{Silt}^*\mathsf{OM} - \eta^*\mathsf{Sand}^*\mathsf{OM}$

	Valeurs des paramètres dans l'équation initiale de Keller et al. (2010)	Nouvelles valeurs des paramètres dans après l'ajustement sur la base de données
α	1,308	1,437
β	0,0119	0,00769
γ	0,0103	0,003881
δ	0,00018	0,0001494
3	0,00008	0,00001991
ν	0,00062	0,0008799
η	0,00059	0,001211

COMPARAISON ENTRE LES PERFORMANCES DES FPT AVANT ET APRÈS AJUSTEMENT

modele s	Références	N	biais	RMSE	EF
FPT15	Dexter et al., 2008	569	0.04	0.13	0.18
Ajusté		569	0.01	0.12	0.25
FPT1	Keller et al., 2010	569	-0.08	0.14	-0.07
Ajusté		569	-0.002	0.10	0.41
FPT9	Hollis et al., 1998	198	0.002	0.13	0.12
Ajusté		198	0	0.12	0.20
FPT8	Leonaviciute et al., 2000	371	-0.04	0.12	0.13
Ajusté		371	0	0.11	0.30

Les FPT ajustées ont toutes des performances meilleures que les FPT avant ajustement

PERSPECTIVES

- Enrichir la BDD sur des zones faiblement couvertes et inclure en particulier des sols caillouteux et sols calcaires
- Prendre en compte dans des études ultérieures pour améliorer la précision:
 - · stratification plus fine de la base de données,
 - · une identification du type d'horizon pédologique
 - une prise en compte de la teneur en carbonate de calcium

Inventaire des sites d'essais

Par Francesca Degan (ACTA)