21/03/2018 – Paris Arnaud Gauffreteau Celia Pontet Margaux d'Orchymont Josiane Lorgeou

De la modélisation à la prédiction des variations de rendement variétaux dans un réseau d'essais virtuels en tournesol

Intérêts et limites des approches statistiques classiques

Contexte Réduction des **Evolution** climatique intrants Plus de stress biotiques et abiotiques Plus de variabilité Diversification des

 Adaptation des variétés aux environnements de culture

• Besoin de variétés :

Diversifiées : et adaptées à une large gamme d'environnements

Caractérisées : Performances moyennes et réponse aux différentes conditions de cultures au champ

→Modéliser les IGE dans les réseaux d'essais variétaux (MET)

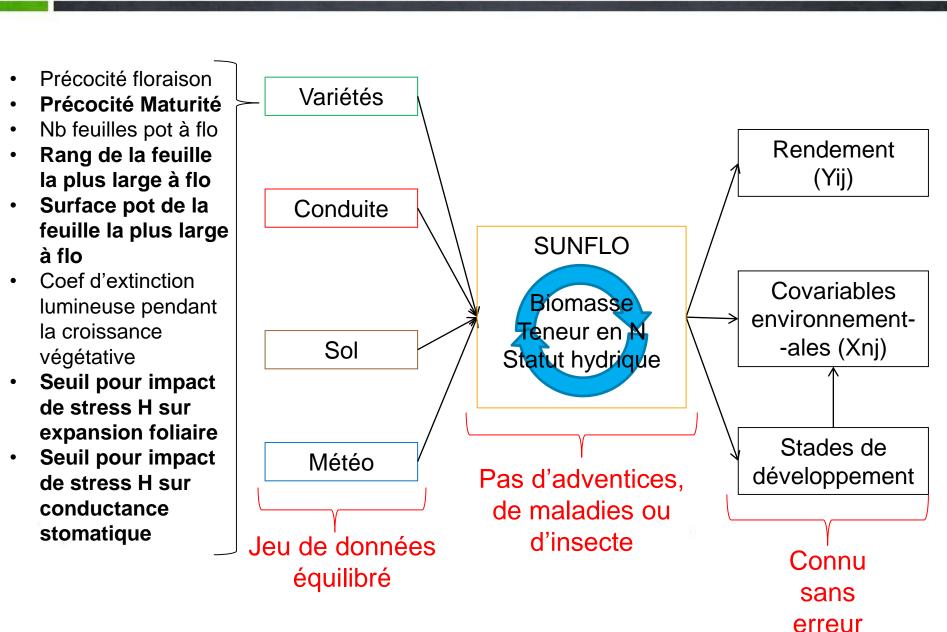
- Diversification des envt de culture
- Plus de variabilité interannuelle

- Importance de la stabilité des variétés
- Réflexion à l'échelle de bouquets de variétés
- →Estimation et prédiction de la stabilité de variétés et bouquets variétaux

Qualité prédictive des modèles d'IGE modeste sur réseaux d'essais variétaux

- Qualité des données (erreurs sur mesures et variables environnementales)?
- Pertinence des variables environnementales?
- Pertinences des méthodes statistiques?

Données générées par modélisation



Réseau d'essais et covariables environnementales

- 7 années : 2008-2014
- 30 sites (23 stations météo)
- RU représentatives des parcelles en tournesol
- 32 variétés virtuelles
- 12 covariables mesurant pour chaque environnement
 - Stress hydrique
 - Stress azoté
 - Offre en rayonnement
 - Offre en température
 - Hautes Température
 - Basses températures pendant
 - La période végétative
 - La floraison
 - Le remplissage

Variable	Écart-type (q/ha)
Environnement	6.2
Génotypes	1.7
GxE	1.3

Modèles statistiques

Estimation des effets environnementaux et IGE

$$Y_{ij} = \mu + G_i + E_j + GxE_{ij} + \varepsilon_{ij}$$

2. Expression de E_j et GxE_{ij} en fonction des variables environnementales par différentes méthodes statistiques

$$E_{j} = f(X_{1j}, ..., X_{nj}) + \epsilon'_{j}$$

$$GxE_{ij} = f(G_{i}, X_{1j}, ..., X_{nj}) + \epsilon'_{ij}$$

Méthodes mobilisées :

- Régression linéaire simple
- Régression pénalisée lasso
- Régression PLS1 et PLS2
- Random forest

Performance en estimation

Méthode	R ² sur Effet E	R ² sur Effet GxE
reg linéaire	93.1%	66.4%
reg lasso	92.9%	65.8%
Random Forest	98.3%	89.4%
PLS1	91.8% (2 axes)	64.8% (5 axes)
PLS2		60.7% (3 axes)

Variables envt	$R^2(\widehat{E})$	R^2 ($I\widehat{GE}$)	$R^2 (I\widehat{GE}) / R^2 (\widehat{E})$
DH_VEG	53.7%	40.1%	0.75
DH_FLO	38.4%	46.8%	1.22
DH_REM	1.0%	2.5%	2.42
Autres_VEG	3.1%	5.2%	1.70
Autres_FLO	3.7%	3.3%	0.88
Autres_REM	0.1%	2.1%	21.98

- Avantage à la RF
- Sinon une part d'IGE expliquée plus limitée
- → Mauvaise prise en compte des interactions entre covariables?

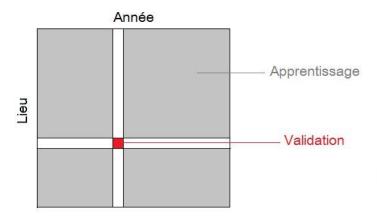
Les stress
 précoces génèrent
 des interactions
 difficiles à
 modéliser

Performance en prédiction

 Estimation des effets environnementaux et IGE sur toute la BdD

$$Y_{ij} = \mu + G_i + E_j + GxE_{ij} + \varepsilon_{ij}$$

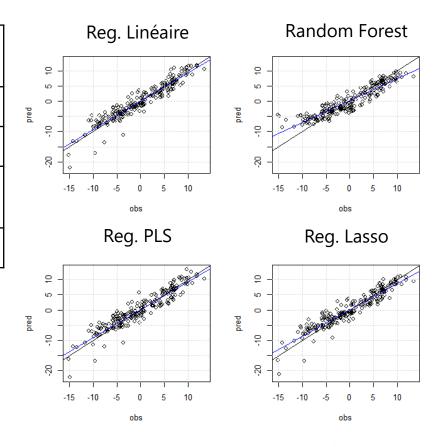
- 2. Validation croisée sur les E_j et GxE_{ij} : On suppose G_i connus parfaitement
 - Validation croisée sur années et sites



Prédiction de l'effet E

Méthode	R ²	R ²
Methode	(estimation)	(prédiction)
reg linéaire	93.1%	89.4%
random forest	98.3%	83.4%
reg PLS (2	91.8%	87.6%
axes)	31.070	67.670
reg lasso	92.9%	88.5%

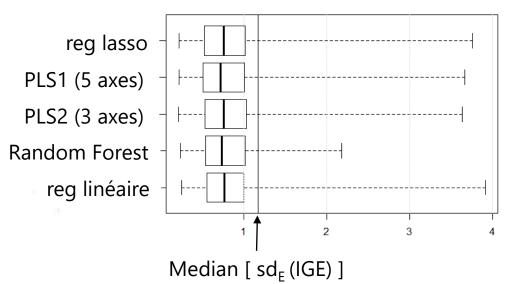
- Bonne prédiction des variations moyenne de rendement
- Random Forest décroche un peu plus que les autres méthodes
- → Stress agissant de façon plutôt additive et linéaire



Prédiction des IGE

Méthode	R ²	R2
	(estimation)	(prédiction)
reg linéaire	66.4%	42.9%
Random Forest	89.4%	55.5%
reg PLS2 (3 axes)	60.7%	47.9%
reg PLS1 (5 axes)	64.8%	48.3%
reg lasso	65.8%	47.4%

RMSEP par environnement



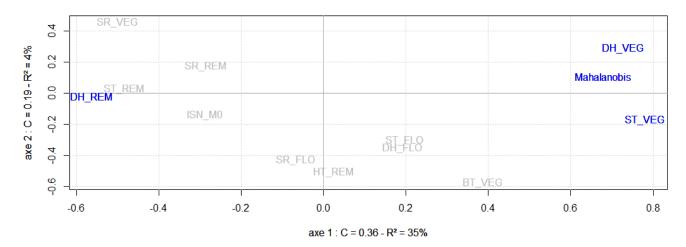
- Perte significative entre estimation et prédiction (de 21 à 38% de la variabilité expliquée n'est pas prédite par les modèles)
- → Des interactions entre variables Moins de robustesse dans la prédiction des IGE
- Random Forest reste la meilleure méthode même si baisse forte entre qualité explicative et prédictive
- → Des interactions entre variables environnementales à considérer
- Une prédiction améliorée par les modèles dans une majorité d'environnements mais des erreurs de prédiction variables
- → Pour quels environnements les IGE sont-elles mal prédites

Quels sont les environnements dont les IGE sont mal prédites?

Régression PLS: RMSEP_j = $f(X1_j, ..., Xn_j, Mahalanobis_j) + \epsilon_j$

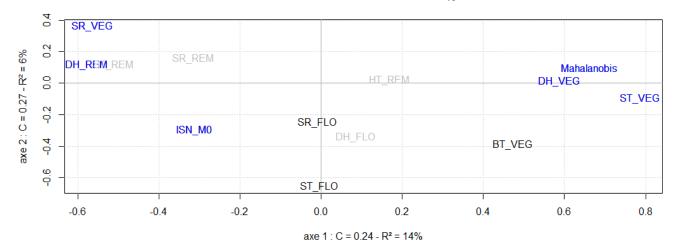
correlations avec axe - R2 = 39%

Régression Linéaire



correlations avec axe - R2 = 20%

Random Forest



En conclusion

- Quelques covariables environnementales permettent de correctement prédire les variations moyennes de rendement entre environnements (utiles pour classer les environnements)
- Même dans un contexte très optimiste avec des données générées parfaitement connues sans erreurs sur les X et les Y, les modèles de GxE n'améliorent pas autant qu'on l'attendrait la prédiction des IGE
- Une partie de cette erreur de prédiction est directement due à un problème d'estimation
- Effet de la singularité des milieux d'essais
- Les interactions précoces sont difficilement modélisables et prédictibles : Elles induisent des statuts différents entre plantes précocement dans le cycle et qui entrainent par la suite des comportements différents face aux stress et aux ressources
- → Reprendre le jeu de données pour différencier l'effet de la précocité des stress et l'effet de la singularité des milieux sur la qualité prédictive des modèles
- → D'autres approches à explorer : composantes de rendement, approches bayésiennes, modèles d'apparentement...